

Florida Solar Energy Center • November 1-4, 2005

Local Hydrogen Production via Catalytic Reformation of Fossil and Renewable Feedstocks

Nazim Muradov, Franklyn Smith Florida Solar Energy Center

Start Date = June, 2002 Planned Completion = December, 2006

Florida Solar Energy Center • November 1-4, 2005

Research Goals and Objectives

- Develop an economically viable process for hydrogen production at the NASA-KSC site from natural gas and locally available renewable feedstocks (landfill gas, biomass) with minimal environmental impact.
- Develop novel efficient and durable catalysts for reformation of methane-containing feedstocks with production of high-purity hydrogen and value-added carbonaceous byproducts.

Florida Solar Energy Center • November 1-4, 2005

Relevance to Current State-of-the-Art

FSEC's technology offers several advantages over current state-of-the-art:

- considerable reduction in greenhouse gas emissions
- production of value-added carbon byproducts: pyrolytic graphite, filaments, etc.
- smooth transition from fossil (NG) to non-fossil (renewable) feedstocks
- feedstock flexibility: practically any CH-containing feedstock could be utilized

Relevance to NASA

- ➤ Research is needed to assess technical and economical feasibility of L-H₂ production at the NASA-KSC site
- Develop new hydrogen production technologies with minimal CO₂ emissions
- \triangleright The technology could be used for distributed H₂ production (transportation)

Florida Solar Energy Center • November 1-4, 2005

Budget, Schedule and Deliverables

Budget (2004-2005): \$250K

Schedule, Deliverables	Q-4 2004	Q-1 2005	Q-2 2005	Q-3 2005
Complete validation of autothermal pyrolysis of methane and down-select an efficient catalyst for the process				
Demonstrate production of high-value carbon products. Characterize carbon products, evaluate market for these products.				
Improve the process sustainability of methane pyrolysis (both autothermal and anaerobic regimes)				
Complete fabrication of 1 SCFM hydrogen production demo unit (catalytic reformer, gas conditioning system)				
Test 1 SCFM thermocatalytic hydrogen production unit at simulated operational conditions				

Florida Solar Energy Center • November 1-4, 2005

Anticipated Technology End Use

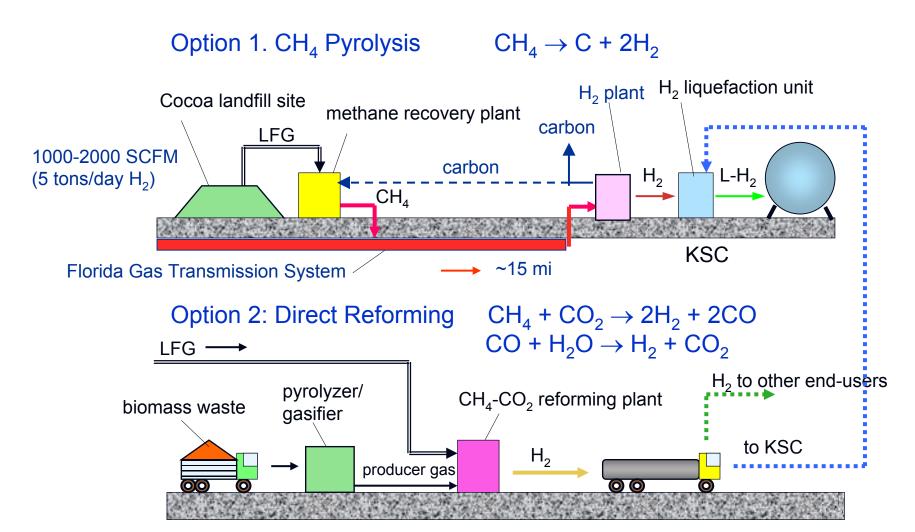
- On-site production of hydrogen from locally available feedstocks (natural gas, landfill gas, biomass waste)
- Hydrogen generators for distributed and portable power applications (in combination with fuel cells)
- Low Emission Alternative Power (LEAP), air-independent propulsion systems, UPS, soldier power
- Production of value-added carbonaceous products (AC, CB, pyrolytic graphite, carbon filaments)

Florida Solar Energy Center • November 1-4, 2005

Accomplishments and Results

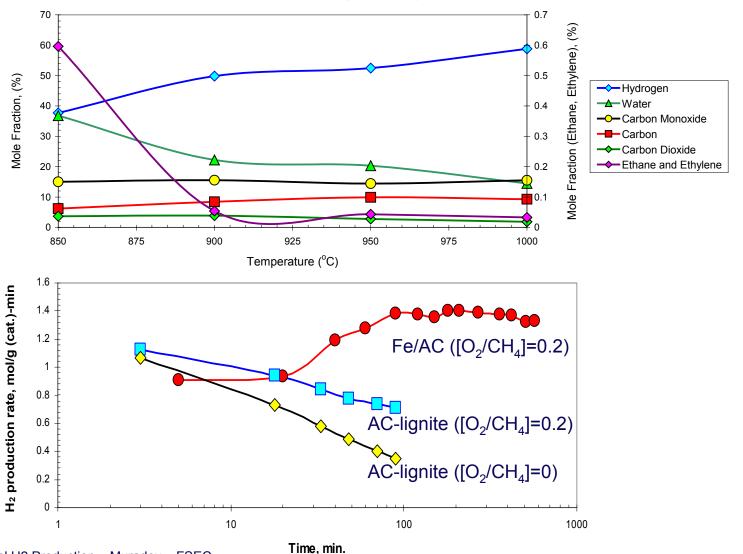
Summary:

- Completed experimental validation of autothermal pyrolysis of methane. Down-selected an efficient carbon-based catalyst for the process.
- Demonstrated production of high-value carbon products (e.g., pyrolytic graphite, carbon filaments) via methane pyrolysis using novel carbon-based catalysts (un-doped and Fe-doped).
- Characterized carbon products and evaluated markets for these products.
- Improved the process sustainability of methane pyrolysis via in-situ generation of catalytically active nano-structured carbon aerosol particles (submitted patent disclosure)
- Completed fabrication of 1 SCFM hydrogen production demo unit (catalytic reformer, gas conditioning system)
- Tested 1 SCFM thermocatalytic hydrogen production unit in autothermal regime using gaseous mixtures mimicking the local landfill gas source.



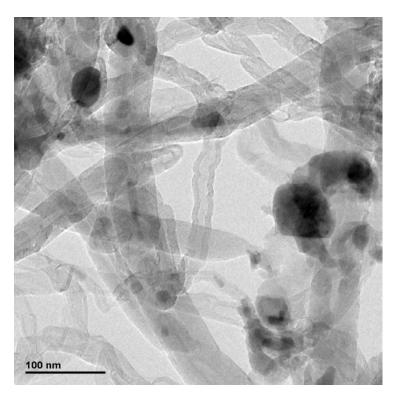
Florida Solar Energy Center • November 1-4, 2005

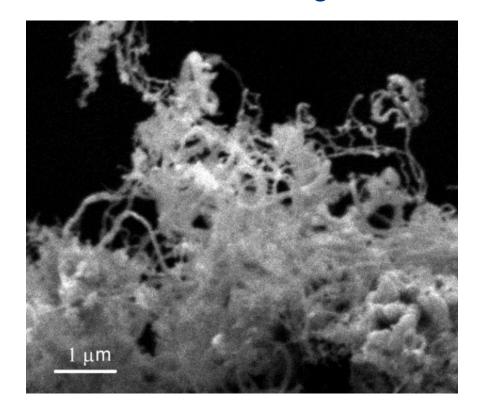
Schematics of the Concept



Florida Solar Energy Center • November 1-4, 2005

Autothermal Pyrolysis of Methane

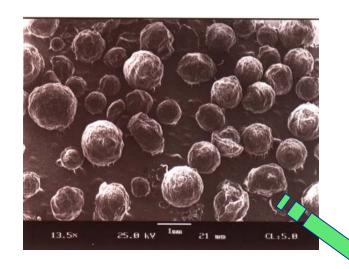



Florida Solar Energy Center • November 1-4, 2005

Carbon Products of CH₄ Pyrolysis

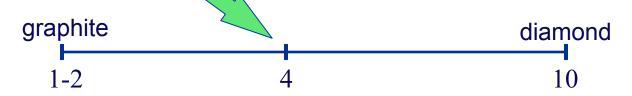
TEM image

SEM/FIB image



Florida Solar Energy Center • November 1-4, 2005

Testing of Carbon Products



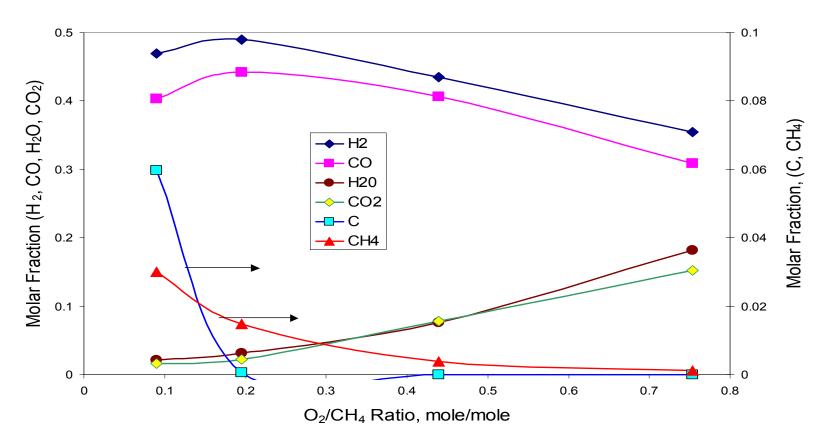
Microhardness Test (Vickers method)*

HV = 184

(graphite: 12)

Mohs scale:

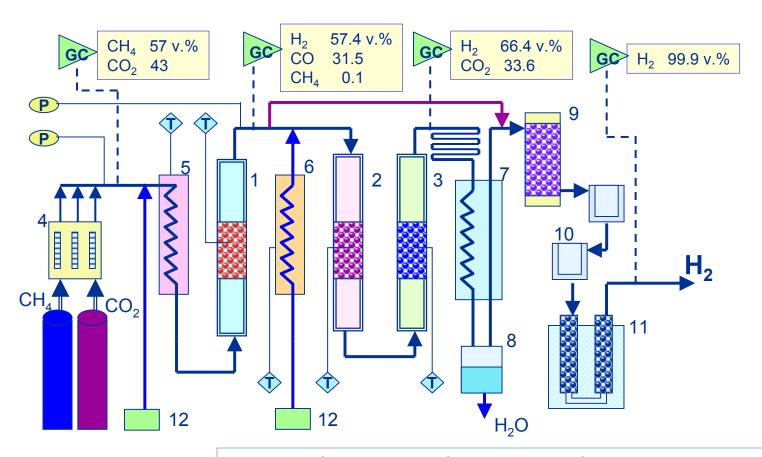
*Credits: Dr. F. Ebrahimi, Y. Wang (UF)



Florida Solar Energy Center • November 1-4, 2005

Autothermal Dry Reforming

$$CH_4 + CO_2 + \chi[O_2] \rightarrow 2H_2 + 2CO$$



Florida Solar Energy Center • November 1-4, 2005

Schematics of 1 SCFM Hydrogen Production Unit

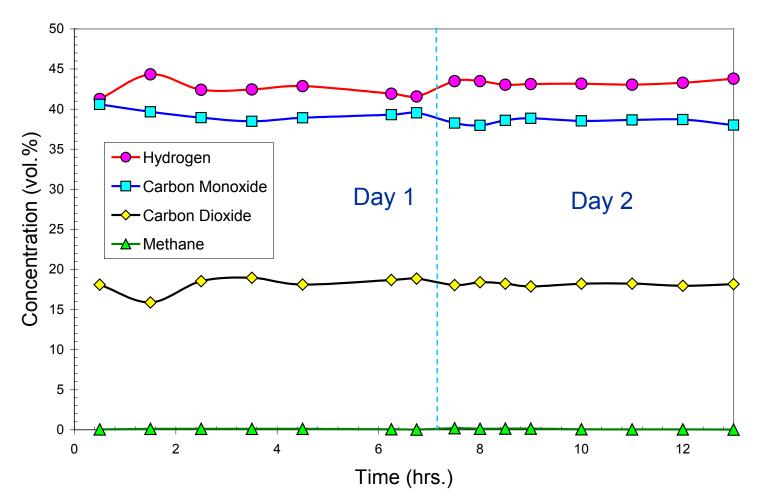
1- reactor (reformer), 2- HT shift reactor, 3- LT shift reactor, 4- gas metering system,

5- pre-heater, 6- steam generator, 7- condenser, 8- water collector, 9- adsorbent,

10- cryo-trap, 11- cryogenic adsorption system, 12- water pump.

Florida Solar Energy Center • November 1-4, 2005

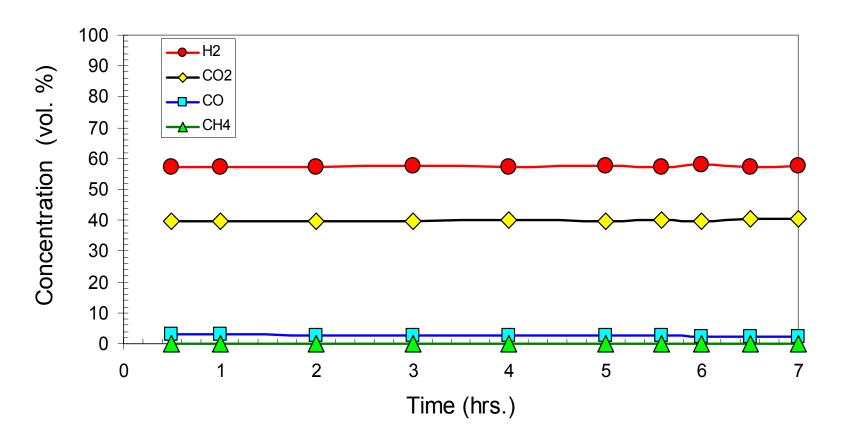
1 SCFM Hydrogen Production Unit



Florida Solar Energy Center • November 1-4, 2005

Testing 1 SCFM Unit (Reforming Stage)

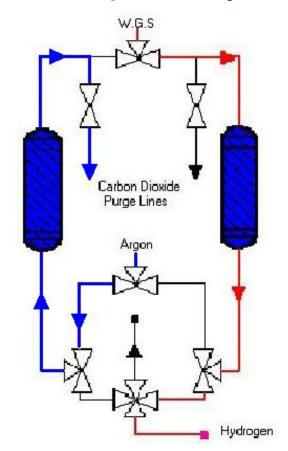
CH₄:CO₂=1.3 mol., O₂:CH₄=0.7 mol., T=850°C



Florida Solar Energy Center • November 1-4, 2005

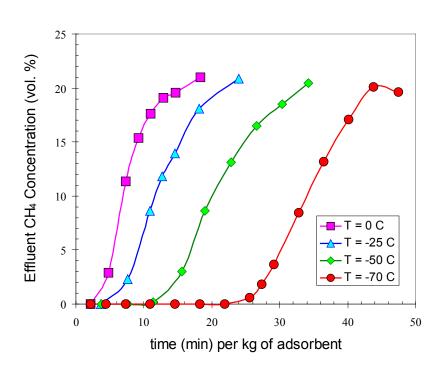
Testing 1 SCFM Unit (Water-Gas Shift Stage)

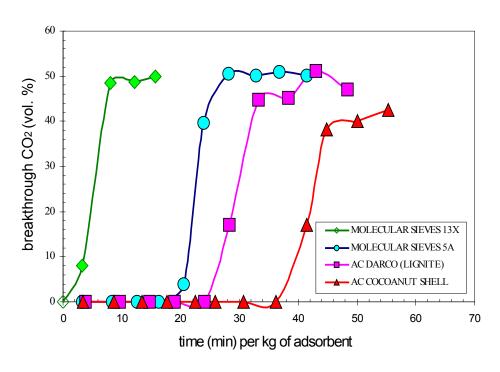
CH₄:CO₂=1.3 mol., O₂:CH₄=0.7 mol., T=850°C



Florida Solar Energy Center • November 1-4, 2005

H₂ Purification Stage. Temperature Swing Adsorption System





Florida Solar Energy Center • November 1-4, 2005

Separation of H₂-CH₄ and H₂-CO₂ Mixtures

H₂ purity achieved: 99.9 vol.%

Florida Solar Energy Center • November 1-4, 2005

Publications and Patents

- N. Muradov, F. Smith, A. T-Raissi, "Catalytic Activity of Carbons for Methane Decomposition Reaction", Catalysis Today, 102/103, 225-233 (2005)
- N. Muradov, Z.Chen, F.Smith, "Fossil Hydrogen with Reduced CO₂ Emission: Modeling Thermocatalytic Decomposition of Methane in a Fluidized Bed of Carbon Particles", *Intern. J. Hydrogen Energy*, 30, 1149-1158 (2005)
- N. Muradov, F. Smith, C. Huang, A. T-Raissi, "Autothermal Pyrolysis of Methane as a Novel Route to Production of Hydrogen with Reduced CO₂ Emissions", 2nd European Hydrogen Conference, Saragossa, Spain, 2005
- N. Muradov, N. Veziroglu, "From Hydrocarbon to Hydrogen-Carbon to Hydrogen Economy",
 Intern. J. Hydrogen Energy, 30, 225 (2005)
- N. Muradov, F. Smith, C. Huang, A. T-Raissi, "Autothermal Pyrolysis of Methane over Carbon Catalysts", *Catalysis Today*, invited paper
- N. Muradov, F. Smith, C. Huang, A. T-Raissi, Decentralized Production of Hydrogen from Hydrocarbons without CO₂ Emission, 16th *World Hydrogen Energy Conf.*, Lyon, France, 2006
- N. Muradov, F. Smith, M. Elbaccouch, A. T-Raissi, Hydrogen Production via Catalytic Processing of Renewable Feedstocks, 16th World Hydrogen Energy Conf., Lyon, France, 2006
- N. Muradov, F. Smith, A. T-Raissi, Process and Apparatus for Hydrogen and Carbon Production via Carbon Aerosol-Catalyzed Dissociation of Hydrocarbons, Patent disclosure submitted to UCF Patent Committee.

Florida Solar Energy Center • November 1-4, 2005

TOP25 articles within the journal:

International Journal of Hydrogen Energy

1. Co-production of hydrogen, electricity and CO"2 from coal with commercially ready technology. Part B: Economic analysis

International Journal of Hydrogen Energy, Vol. 30, Issue 7, Pages 769-784

2. From hydrocarbon to hydrogencarbon to hydrogen economy

Muradov, N., Veziroglu, N.

International Journal of Hydrogen

Energy, Vol. 30, Issue 3, Pages 225-237

Florida Solar Energy Center • November 1-4, 2005

Future Plans

- Improve sustainability of catalytic methane pyrolysis by using in-situ generated carbon aerosol particles. Increase the yield of high-value carbon products.
- Continue characterization of carbon byproducts, evaluate potential application areas
- Field-test 1 SCFM hydrogen production demo unit at simulated operational conditions
- Increase throughput and optimize hydrogen purification unit (TSA system)
- Conduct system optimization, integration and scale-up studies for on-site hydrogen production.

Florida Solar Energy Center • November 1-4, 2005

Thank you.